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Theproblemof the dual synchronization of two different fractional-order chaotic systems is studied. By a linear controller, we realize
the dual synchronization of fractional-order chaotic systems. Finally, the proposed method is applied for dual synchronization of
Van der Pol-Willis systems and Van der Pol-Duffing systems. The numerical simulation shows the accuracy of the theory.

1. Introduction

In recent years, the topic of chaos synchronization has attrac-
ted increasing attention inmany fields.The result of synchro-
nization of chaotic oscillators is used in nonlinear oscillators
[1], circuit experiment [2], secret communication [3], and
someother fields. In 1990, the first concept of synchronization
was presented by Carroll and Perora [4]. And there are many
methods about chaos synchronization such as Lyapunov
equation [5], Perora-Carroll (PC) [4] and backstepping con-
trol [6]. All of these methods are amid of the synchronization
between one master and one slave system do not consist of
the synchronization of multimaster systems and multislave
systems.

Dual synchronization is a special circumstance in syn-
chronization of chaotic oscillators. The first idea of mul-
tiplexing chaos using synchronization was investigated in
a small map and an electronic circuit model by Tsimring
and Sushchik in 1996 in [7]; then the concept of dual syn-
chronization was raised by Liu and Davids in 2000 in [8],
which concentrates on using a scalar signal to simultaneously
synchronize two different pairs chaotic oscillators, that is, the
synchronization between two master systems and two slave
systems.

Nowadays, there are many dual synchronization meth-
ods, such as in 2000 Liu and Davids introduce the dual

synchronization of 1-D discrete chaotic systems via specific
classes of piecewise-linear maps with conditional linear
coupling in [8].The dual synchronization between the Lorenz
and Rossler systems by the Lyapunov stabilization theory is
investigated in [9]. The output feedback strategy is used to
study the dual synchronization of two different 3-D continu-
ous chaotic systems in [10].Then the dual synchronization in
modulated time-delayed systems is investigated by designing
a delay feedback controller in [11]. All of these works are
amid of the dual synchronization of integer-order chaotic
systems and do not consist of the dual synchronization of
fractional-order chaotic systems. In this paper, a newmethod
of dual synchronization of fractional-order chaotic systems is
proposed, by a linear controller; the dual synchronization of
chaos is obtained.

The rest of this paper is organized as follows: in Section 2,
we construct a theory frame about the dual synchroniza-
tion of two different fractional-order chaotic systems. By a
linear controller, we obtain dual synchronization between
two different fractional-order chaotic systems in Section 3.
In Section 4, the proposed method is applied to dual syn-
chronization of Van der Pol-Willis systems and Van der
Pol-Duffing systems for evaluating the performance of the
method and by numerical simulation; the result shows that
the controller designed by the application of this method is
effective. Finally, conclusions are drawn in Section 5.
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2. Problem Analysis

We define the following two systems as two master systems.

Master 1:
𝑑

𝛼

𝑥

𝑑𝑡𝛼
= 𝑓 (𝑡, 𝑥) , (1)

Master 2:
𝑑

𝛼

𝑦

𝑑𝑡𝛼
= 𝑔 (𝑡, 𝑦) , (2)

where 𝑥 = [𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
]
𝑇 and 𝑦 = [𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑚
]
𝑇 are the

state vectors of the two master systems. 𝑓 ∈ 𝐶[𝑅
+

× 𝑅
𝑛

,

𝑅
𝑛

] and 𝑔 ∈ 𝐶[𝑅
+

× 𝑅
𝑚

, 𝑅
𝑚

] are two known functions.
𝛼 ∈ (0, 1] is the order of the two master systems. By a linear
combination of the two master systems states, a signal V

𝑚
is

give as

V
𝑚
=

𝑛

∑

𝑖=𝑛

𝑎
𝑖
𝑥

𝑖
+

𝑚

∑

𝑗=1

𝑏
𝑗
𝑦

𝑗
= [𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
] 𝑥 + [𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
] 𝑦

= 𝐴𝑥 + 𝐵𝑦 = [𝐴 𝐵] [
𝑥

𝑦
] = 𝐶

𝑇

𝜉,

(3)

where 𝐴 = [𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑛
]
𝑇 and 𝐵 = [𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
]
𝑇 are two

known matrices, and 𝑎
𝑖
, 𝑏

𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚

cannot be zero at the same time. So𝑃 = [𝐴𝑇

𝐵
𝑇

]
𝑇

is a known

matrix. 𝜉 = [𝑥
𝑇

𝑦
𝑇

]
𝑇

is a combination of the two master
systems states. The corresponding two slave systems are as
follows:

Slave 1:
𝑑

𝛼

𝑋

𝑑𝑡𝛼
= 𝑓 (𝑡, 𝑋) + 𝑈

(1)

, (4)

Slave 2:
𝑑

𝛼

𝑌

𝑑𝑡𝛼
= 𝑔 (𝑡, 𝑌) + 𝑈

(2)

, (5)

where 𝑋 = [𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑛
]
𝑇 and 𝑌 = [𝑌

1
, 𝑌

2
, . . . , 𝑌

𝑚
]
𝑇 are

the state vectors of the two slave systems, 𝑈(1)

= [𝑢
1

1
, 𝑢

1

2
, . . . ,

𝑢
1

𝑛
]
𝑇 and 𝑈(2)

= [𝑢
2

1
, 𝑢

2

2
, . . . , 𝑢

2

𝑚
]
𝑇 are vectors of manipulated

variables, and 𝛼 ∈ (0, 1] is the order of the two slave systems.
Similarly, by a linear combination of two slave systems states,
a signal V

𝑠
is generated as follows:

V
𝑠
=

𝑛

∑

𝑖=𝑛

𝑎
𝑖
𝑋

𝑖
+

𝑚

∑

𝑗=1

𝑏
𝑗
𝑌

𝑗

= [𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑛
]𝑋 + [𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
] 𝑌

= 𝐴𝑋 + 𝐵𝑌 = [𝐴 𝐵] [
𝑋

𝑌
] = 𝐶

𝑇

𝜂,

(6)

where 𝜂 = [𝑋
𝑇

𝑌
𝑇

]
𝑇

is a combination of the two slave
systems states.

The error signal for dual synchronization is

𝑒 = V
𝑠
− V

𝑚
= [𝐴 𝐵] [

𝑋 − 𝑥

𝑌 − 𝑦
] = 𝐶

𝑇

(𝜂 − 𝜉) . (7)

The main goal is to synchronize the master systems and the
slave systems is equivalent to

lim
𝑡 → ∞

‖𝑋 (𝑡) − 𝑥 (𝑡)‖ = 0, lim
𝑡 → ∞

󵄩󵄩󵄩󵄩𝑌 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 = 0,

(8)

where ‖ ⋅ ‖ is the Euclidian norm.

3. Dual Synchronization Strategy

Lemma 1. Considering the fractional-order system

𝐷
𝛼

𝑧 (𝑡) = 𝑄𝑧, 𝑧 (0) = 𝑧
0
, (9)

where 0 < 𝛼 ≤ 1, 𝑧 ∈ 𝑅𝑛, and 𝑄 ∈ 𝑅
𝑛×𝑛; then system (9) is

stable if and only if | arg(𝜆
𝑖
(𝑄))| ≥ (𝛼𝜋/2), 𝑖 = 1, 2, . . ., where

arg(𝜆
𝑖
(𝑄)) denotes the argument of the eigenvalue 𝜆

𝑖
of 𝑄.

Theorem 2. The dual synchronization of fractional-order
chaotic systems between the master systems and the slave
systems is achieved if and only if the following condition satisfies

󵄨󵄨󵄨󵄨󵄨
arg (eig (𝐺 (𝑡) + 𝐾𝐶𝑇

))
󵄨󵄨󵄨󵄨󵄨
≥
𝛼𝜋

2
, (10)

where 𝐺(𝑡) is the coefficient matrix of master systems and𝐾 is
a control gain vector.

Proof. We can rewrite (1) and (2) in the following form by
defining Ψ = [𝑓 𝑔]

𝑇:

[
[
[
[

[

𝑑
𝛼

𝑥

𝑑𝑡𝛼

𝑑
𝛼

𝑦

𝑑𝑡𝛼

]
]
]
]

]

= [
𝑓 (𝑡, 𝑥)

𝑔 (𝑡, 𝑦)
] ,

𝑑
𝛼

𝜉

𝑑𝑡𝛼
= Ψ (𝑡, 𝜉) . (11)

Similarly, (4) and (5) can be rewritten as

[
[
[
[

[

𝑑
𝛼

𝑋

𝑑𝑡𝛼

𝑑
𝛼

𝑌

𝑑𝑡𝛼

]
]
]
]

]

= [
𝑓 (𝑡, 𝑋) + 𝑈

(1)

𝑔 (𝑡, 𝑌) + 𝑈
(2)
] ,

𝑑
𝛼

𝜂

𝑑𝑡𝛼
= Ψ (𝑡, 𝜂) + 𝑈,

(12)

where 𝑈 = [(𝑈
(1)

)
𝑇

(𝑈
(2)

)
𝑇

]
𝑇, one defines 𝑈 = [ 𝑈

(1)

𝑈
(2) ] =

[
𝐾1𝑒

𝐾2𝑒
] and 𝐸 = [𝑋−𝑥

𝑌−𝑦
].

Equation (12) is transformed into

[
[
[

[

𝑑
𝛼

𝑋

𝑑𝑡𝛼

𝑑
𝛼

𝑌

𝑑𝑡𝛼

]
]
]

]

= [
𝑓 (𝑡, 𝑋) + 𝐾

1
𝑒

𝑔 (𝑡, 𝑌) + 𝐾
2
𝑒
] , (13)
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so the error system is transformed into

𝑑
𝛼

𝐸

𝑑𝑡𝛼
=
[
[
[

[

𝑑
𝛼

𝑋

𝑑𝑡𝛼
−
𝑑

𝛼

𝑥

𝑑𝑡𝛼

𝑑
𝛼

𝑌

𝑑𝑡𝛼
−
𝑑

𝛼

𝑦

𝑑𝑡𝛼

]
]
]

]

=
𝑑

𝛼

𝜂

𝑑𝑡𝛼
−
𝑑

𝛼

𝜉

𝑑𝑡𝛼
. (14)

The error system is obtained as

𝑑
𝛼

𝜂

𝑑𝑡𝛼
−
𝑑

𝛼

𝜉

𝑑𝑡𝛼

= Ψ (𝑡, 𝜂) + 𝐾𝑒 − Ψ (𝑡, 𝜉) = Ψ (𝑡, 𝜂) − Ψ (𝑡, 𝜉) + 𝐾𝑒

= Ψ (𝑡, 𝜉 + 𝐸) − Ψ (𝑡, 𝜉) + 𝐾 (𝜂 − 𝜉)

= Ψ (𝑡, 𝜉 + 𝐸) − Ψ (𝑡, 𝜉) + 𝐾𝐶
𝑇

𝐸.

(15)

Using the first-order Taylor expansion, the function Ψ(⋅) is
rewritten as

Ψ (𝑡, 𝜉 + 𝐸) − Ψ (𝑡, 𝜉)

=
𝜕Ψ (𝑡, 𝜉)

𝜕𝜉
𝐸 + h.o.t = 𝐺 (𝑡) 𝐸 + h.o.t,

(16)

where h.o.t denotes the higher order terms of the series. We
substitute (16) into (15) and yield

𝑑
𝛼

𝐸

𝑑𝑡𝛼
= 𝐺 (𝑡) 𝐸 + h.o.t + 𝐾𝐶𝑇

𝐸 = [𝐺 (𝑡) + 𝐾𝐶
𝑇

] 𝐸 + h.o.t.
(17)

We can transfer the (17) into

𝑑
𝛼

𝐸

𝑑𝑡𝛼
= [𝐺 (𝑡) + 𝐾𝐶

𝑇

] 𝐸 (18)

according to Lemma 1, we can know that the error system
is asymptotically stable at zero if and only if the following
condition is satisfied

󵄨󵄨󵄨󵄨󵄨
arg (eig (𝐺 (𝑡) + 𝐾𝐶𝑇

))
󵄨󵄨󵄨󵄨󵄨
≥
𝛼𝜋

2
. (19)

4. The Example Analysis and
Numerical Simulations

Example 3 (dual synchronization of Van der Pol-Willis sys-
tems). In the first example, we can use the proposed method
to achieve the dual synchronization of the Van der Pol system
and the Willis system.

Master 1: Van der Pol system

𝑑
𝛼

𝑥
1

𝑑𝑡𝛼
= 𝑥

1
− 𝛾𝑥

3

1
− 𝛽𝑥

2
+ 𝑓

1
cos 𝑡,

𝑑
𝛼

𝑥
2

𝑑𝑡𝛼
= 𝑙 (𝑥

1
− 𝑚𝑥

2
+ 𝑛) .

(20)

Master 2:Willis system

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= 𝑦

2
,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= 𝑎𝑦

1
+ 𝑏𝑦

2

1
+ 𝑐𝑦

3

1
+ 𝑑𝑦

2
+ 𝑓

2
cos 𝑡.

(21)

So the corresponding slave systems are as follows:

Slave 1:
𝑑

𝛼

𝑋
1

𝑑𝑡𝛼
= 𝑋

1
− 𝛾𝑋

3

1
− 𝛽𝑋

2
+ 𝑓

1
cos 𝑡 + 𝑘

1
𝑒,

𝑑
𝛼

𝑋
2

𝑑𝑡𝛼
= 𝑙 (𝑋

1
− 𝑚𝑋

2
+ 𝑛) + 𝑘

2
𝑒,

(22)

Slave 2:
𝑑

𝛼

𝑌
1

𝑑𝑡𝛼
= 𝑌

2
+ 𝑘

3
𝑒,

𝑑
𝛼

𝑌
2

𝑑𝑡𝛼
= 𝑎𝑌

1
+ 𝑏𝑌

2

1
+ 𝑐𝑌

3

1
+ 𝑑𝑌

2
+ 𝑓

2
cos 𝑡 + 𝑘

4
𝑒,

(23)

where 𝑒 = 𝑎
1
𝑒

1
+ 𝑎

2
𝑒

2
+ 𝑏

1
𝑒

3
+ 𝑏

2
𝑒

4
, 𝑒

1
= 𝑋

1
− 𝑥

1
, 𝑒

2
= 𝑋

2
−

𝑥
2
, 𝑒

3
= 𝑌

1
− 𝑦

1
, and 𝑒

4
= 𝑌

2
− 𝑦

2
.

The 𝐺(𝑡)matrix of the master systems is achieved as

𝐺 (𝑡) =
[
[
[
[
[
[

1 − 3𝛾𝑥
2

1
−𝛽 0 0

𝑙 𝑙𝑚 0 0

0 0 0 1

0 0 𝑎 + 2𝑏𝑦
1
+ 3𝑐𝑦

2

1
𝑑

]
]
]
]
]
]

, (24)

so the corresponding error matrix are as follows:

(
(
(
(
(
(
(
(

(

𝑑
𝛼

𝑒
1

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
2

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
3

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
4

𝑑𝑡
𝛼

)
)
)
)
)
)
)
)

)

= (

1−3𝛾𝑥
2

1
+ 𝑎

1
𝑘

1
−𝛽 + 𝑎

2
𝑘

1
𝑏
1
𝑘

1
𝑏
2
𝑘

1

𝑙 + 𝑎
1
𝑘

2
𝑙𝑚 + 𝑎

2
𝑘

2
𝑏
1
𝑘

2
𝑏
2
𝑘

2

𝑎
1
𝑘

3
𝑎

2
𝑘

3
𝑏
1
𝑘

3
1 + 𝑏

2
𝑘

3

𝑎
1
𝑘

4
𝑎

2
𝑘

4
𝑎+2𝑏𝑦

1
+3𝑐𝑦

2

1
+𝑏

1
𝑘

4
𝑑+𝑏

2
𝑘

4

)

× (

𝑒
1

𝑒
2

𝑒
3

𝑒
4

) .

(25)

We should choose the appropriate parameters so that all the
eigenvalues of the Jacobian matrix of (25) satisfy Matignon
condition; that is, the eigenvalues evaluated at the equilibrium
point are satisfied:

󵄨󵄨󵄨󵄨󵄨
arg (eig (𝐺 (𝑡) + 𝐾𝐶𝑇

))
󵄨󵄨󵄨󵄨󵄨
>
𝛼𝜋

2
. (26)
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Figure 1: Error signals between the pair of Van der Pol system.

The eigenvalue equation of the equilibrium point is locally
asymptotically stable. From what we have discussed above,
we can know that 𝐴 and 𝐵 are two known matrices; the
parameter 𝐾 can be appropriately selected for satisfying the
Matignon condition.

Dual synchronization of the Van der Pol system and the
Willis system is simulated. The system parameters are set to
be 𝛾 = 1/3, 𝛽 = 1, 𝑓

1
= 0.74, 𝑙 = 0.1, 𝑚 = 0.8, 𝑛 = 0.7,

𝑎 = −0.9, 𝑏 = 3, 𝑐 = −2, 𝑑 = −0.1, 𝑓
2
= 0.1, 𝐴 = [1, 1, 1],

𝐵 = [1, 1, 1], and 𝛼 = 1, so

𝐺(𝑡) + 𝐾𝐶
𝑇

= (

1 − 𝑥
2

1
+ 𝑘

1
−1 + 𝑘

1
𝑘

1
𝑘

1

0.1 + 𝑘
2

−0.08 + 𝑘
2

𝑘
2

𝑘
2

𝑘
3

𝑘
3

𝑘
3

1 + 𝑘
3

𝑘
4

𝑘
4

−0.9 + 6𝑦
1

− 6𝑦
2

1
+ 𝑘

4
−0.1 + 𝑘

4

) .

(27)

If −295 < 𝑘
1
< −130, 𝑘

2
= −0.1, 𝑘

3
= −1, and 𝑘

4
= −400,

which satisfy (18), the eigenvalue equation of the equilibrium
point is locally asymptotically stable. We choose 𝑘

1
= −210,

𝑘
2
= −0.1, 𝑘

3
= −1, and 𝑘

4
= −400. The initial conditions

of the master system 1 and the master system 2 are taken as
𝑥

1
(0) = 0.1, 𝑥

2
(0) = 0.2 and 𝑦

1
(0) = 0.2, 𝑦

2
(0) = 0.3; the

initial conditions of the slave system 1 and the slave system 2
are taken as 𝑋

1
(0) = 0.3, 𝑋

2
(0) = 0.4 and 𝑌

1
(0) = 0.5,

𝑌
2
(0) = 0.6, so the initial conditions of the error system

are set to be 𝑒
1
(0) = 0.2, 𝑒

2
(0) = 0.2, 𝑒

3
(0) = 0.3, and

𝑒
4
(0) = 0.3. In Figures 1 and 2, we can see that all error

variables have converged to zero; that is, we achieve the
dual synchronization between the Van der Pol and the Willis
systems.
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e
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Figure 2: Error signals between the pair of Willis system.

Example 4 (dual synchronization of Van der Pol and Duffing
systems). For Example 4, the dual synchronization of Van
der Pol and Duffing systems is investigated.

Master 1: Van der Pol system

𝑑
𝛼

𝑥
1

𝑑𝑡𝛼
= 𝑥

1
− 𝛾𝑥

3

1
− 𝛽𝑥

2
+ 𝑓

1
cos 𝑡,

𝑑
𝛼

𝑥
2

𝑑𝑡𝛼
= 𝑙 (𝑥

1
− 𝑚𝑥

2
+ 𝑛) .

(28)

Master 2: Duffing system

𝑑
𝛼

𝑦
1

𝑑𝑡𝛼
= 𝑦

2
,

𝑑
𝛼

𝑦
2

𝑑𝑡𝛼
= 𝑎𝑦

1
+ 𝑏𝑦

3

1
+ 𝑐𝑦

2
+ 𝑓

2
cos 𝑡.

(29)

So the corresponding slave systems are

Slave 1:

𝑑
𝛼

𝑋
1

𝑑𝑡𝛼
= 𝑋

1
− 𝛾𝑋

3

1
− 𝛽𝑋

2
+ 𝑓

1
cos 𝑡 + 𝑘

1
𝑒,

𝑑
𝛼

𝑋
2

𝑑𝑡𝛼
= 𝑙 (𝑋

1
− 𝑚𝑋

2
+ 𝑛) + 𝑘

2
𝑒,

(30)

Slave 2:

𝑑
𝛼

𝑌
1

𝑑𝑡𝛼
= 𝑌

2
+ 𝑘

3
𝑒,

𝑑
𝛼

𝑌
2

𝑑𝑡𝛼
= 𝑎𝑌

1
+ 𝑏𝑌

3

1
+ 𝑐𝑌

2
+ 𝑓

2
cos 𝑡 + 𝑘

4
𝑒,

(31)

where 𝑒 = 𝑎
1
𝑒

1
+𝑎

2
𝑒

2
+𝑏

1
𝑒

3
+𝑏

2
𝑒

4
, 𝑒

1
= 𝑋

1
−𝑥

1
, 𝑒

2
= 𝑋

2
−𝑥

2
,

𝑒
3
= 𝑌

1
− 𝑦

1
, and 𝑒

4
= 𝑌

2
− 𝑦

2
.
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Figure 3: Error signals between the pair of Van der Pol system.

The 𝐺(𝑡)matrix of the master systems is achieved as

𝐺 (𝑡) =

[
[
[
[
[
[
[

1 − 3𝛾𝑥
2

1
−𝛽 0 0

𝑙 𝑙𝑚 0 0

0 0 0 1

0 0 𝑎 + 3𝑏𝑦
2

1
𝑐

]
]
]
]
]
]
]

. (32)

So the corresponding error matrix are as follows:

(
(
(
(
(
(
(
(

(

𝑑
𝛼

𝑒
1

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
2

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
3

𝑑𝑡
𝛼

𝑑
𝛼

𝑒
4

𝑑𝑡
𝛼

)
)
)
)
)
)
)
)

)

= (

1 − 3𝛾𝑥
2

1
+ 𝑎

1
𝑘

1
−𝛽 + 𝑎

2
𝑘

1
𝑏
1
𝑘

1
𝑏
2
𝑘

1

𝑙 + 𝑎
1
𝑘

2
𝑙𝑚 + 𝑎

2
𝑘

2
𝑏
1
𝑘

2
𝑏
2
𝑘

2

𝑎
1
𝑘

3
𝑎

2
𝑘

3
𝑏
1
𝑘

3
1 + 𝑏

2
𝑘

3

𝑎
1
𝑘

4
𝑎

2
𝑘

4
𝑎 + 3𝑏𝑦

2

1
+ 𝑏

1
𝑘

4
𝑐 + 𝑏

2
𝑘

4

)

× (

𝑒
1

𝑒
2

𝑒
3

𝑒
4

) .

(33)

We should choose the appropriate parameters so that all the
eigenvalues of the Jacobian matrix of (33) satisfy Matignon
condition; that is, the eigenvalues evaluated at the equilibrium
point are satisfied:

󵄨󵄨󵄨󵄨󵄨
arg (eig (𝐺 (𝑡) + 𝐾𝐶𝑇

))
󵄨󵄨󵄨󵄨󵄨
>
𝛼𝜋

2
. (34)

The eigenvalue equation of the equilibrium point is locally
asymptotically stable. Because 𝐴 and 𝐵 are two known
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Figure 4: Error signals between the pair of Duffing system.

matrices, the parameter 𝐾 can be appropriately selected for
satisfying the Matignon condition.

According to what we have studied above, parameters are
set to 𝛾 = 1/3, 𝛽 = 1, 𝑓

1
= 0.74, 𝑙 = 0.1, 𝑚 = 0.8, 𝑛 = 0.7,

𝑎 = 1, 𝑏 = −1, 𝑐 = −0.15, 𝑓
2
= 0.3, 𝐴 = [1, 1, 1], 𝐵 = [1, 1, 1],

and 𝛼 = 0.98, so

𝐺 (𝑡) + 𝐾𝐶
𝑇

=(

1 − 𝑥
2

1
+ 𝑘

1
−1 + 𝑘

1
𝑘

1
𝑘

1

0.1 + 𝑘
2

−0.08 + 𝑘
2

𝑘
2

𝑘
2

𝑘
3

𝑘
3

𝑘
3

1 + 𝑘
3

𝑘
4

𝑘
4

1 − 3𝑦
2

1
+ 𝑘

4
−0.15 + 𝑘

4

).

(35)

If −275 < 𝑘
1
< −117, 𝑘

2
= −0.1, 𝑘

3
= −1, and 𝑘

4
= −400,

which satisfy (34), the eigenvalue equation of the equilibrium
point is locally asymptotically stable. We choose 𝑘

1
= −200,

𝑘
2
= −0.1, 𝑘

3
= −1, and 𝑘

4
= −400. The initial conditions

of the master system 1 and the master system 2 are taken as
𝑥

1
(0) = 0.1, 𝑥

2
(0) = 0.2 and 𝑦

1
(0) = 0.2, 𝑦

2
(0) = 0.3, the

initial conditions of the slave system 1 and the slave system
2 are taken as 𝑋

1
(0) = 0.3, 𝑋

2
(0) = 0.4 and 𝑌

1
(0) = 0.5,

𝑌
2
(0) = 0.6, so the initial conditions of the error system

are set to be 𝑒
1
(0) = 0.2, 𝑒

2
(0) = 0.2, 𝑒

3
(0) = 0.3, and

𝑒
4
(0) = 0.3. In Figures 3 and 4, we can see that all error

variables have converged to zero; that is, we achieve the dual
synchronization between the Van der Pol and the Duffing
systems.

5. Conclusions

In this work, we construct a theory frame about dual synchro-
nization of two different fractional-order chaotic systems and
propose a method of dual synchronization. In addition, this
method is used for designing a synchronization controller to
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achieve the dual synchronization of two different fractional-
order chaotic systems. Finally, the proposed method is
applied for dual synchronization of the Van der Pol-Willis
systems and the Van der Pol-Duffing systems. The numerical
simulations proves the accuracy of the theory.
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